RFM69 C++ driver library for STM32 (and other controllers)

I recently developed a protocol agnostic driver library for HopeRF’s RFM69 modules. Protocol agnostic means that you get full control over the module and the data packets that you want to send or receive. You can use this library for receiving packets from existing commercial devices like temperature sensors, or you can set up your own RF network using your own protocol. Continue reading “RFM69 C++ driver library for STM32 (and other controllers)”

Figuring out the power level settings of HopeRF’s RFM69 (H)W modules

I have been developing a sensor and actuator network for a while now using HopeRF’s cheap RFM69 HW modules. These modules use the licence-free ISM and SRD frequency bands (433 MHz resp. 868 MHz) to send and receive packets and they cost around 5€ per module. HopeRF sells them in two different flavours: RFM69W and RFM69HW (RFM69CW and RFM69HCW also available in a different form factor).

The main difference between these two types is the maximum output power. While a RFM69W module can “only” output from -18 dBm to +13 dBm, the maximum output power of a RFM69HW module is +20 dBm (=100 mW). They are really great indoors because of their range and low attenuation compared to WIFI frequencies of >2 GHz.

There is a downside however: The datasheet is kind of… sketchy regarding some important information. Much better than the datasheet of the previous generation of RF modules (RFM12 for example), but still hard to understand in some parts. I will try to figure out the power level settings of +20 dBm RFM69HW modules in this post while comparing them to the regular RFM69W modules. Of course the datasheet contains information about setting the output power, but there are some ambiguities and contradictions. But more on that later… Continue reading “Figuring out the power level settings of HopeRF’s RFM69 (H)W modules”